Password Cracking

About me

- Originally from Fargo, ND
- Came down to DSU in 2007
 - B.S. Computer & NetworkSecurity
 - Minor in Networking
 - M.S. Information Assurance
 - D.Sc. Cyber Operations (working on it)

Security Work

- Web Application/Software Developer (2008)
- Network Administrator (2010)
- Security Consultant (2011)
 - Worked for a large firm in Fargo, ND for about three years
- Independent Security Consultant (current)
- Instructor at DSU (current)

- You'll l how to
- You wi don't d
 - Not a

U GUYS

srsly

v you

at you

Legitimate Password Cracking

What makes a strong password?

- Length (total number of characters)
- Complexity
 - Upper/lower case
 - Numbers
 - Special characters
- Frequency of change
 - If it takes you 60 days to crack my password, and I change it every 59...guess what?

How do attackers break passwords?

 Really not a trick question, just want to know what you guys think.

Two Main Categories

Online

- Trying to authenticate to a real service with a live, active account
- Sitting down in front of your buddy's computer and trying to log in to their FaceBook account

Offline

 Getting a secure password value, taking it back to your own computer, and trying to breakit

How about a brute-force attack?

 Systematically guessing every possible combination until you get the correct answer

Calculating Character Space

- In passwords, we can reuse characters
- Determine the number of allowed characters
 - Just lowercase: 26 total
 - Upper/lower: 52 total
 - Add in numbers (0-9) 62 total
- Figure out how long the password is
- Raise the number of allowed characters to the power of the length of the password
- (Character Space)^Length

Calculating Character Space

- What if you can only use numbers for your password
 - Numbers 0-9, count them, there's 10 possibilities
- If your password is 1234 (length of 4)
- We can take 10*10*10*10 or 10^4
- There's only about 10,000 possibilities

Calculating Character Space

- A bit more complex...
- 26 upper case + 26 lower case = 52 total
- My password is Password (8 characters long)
- 52*52*52*52*52*52*52 or **52^8**
- 52^8 = **53,459,728,531,456**
 - Fifty-three trillion possible combinations

https://www.grc.com/haystack.htm

 Password Haystack – how long will it take to brute force your password?

(NOTHING you do here ever leaves your browser. What happens here, stays here.)

5 Characters

cyber

Enter and edit your test passwords in the field above while viewing the analysis below.

Brute Force Search Space Analysis:

26	Search Space Depth (Alphabet):
5 characters	Search Space Length (Characters):
12,356,630	Exact Search Space Size (Count): (count of all possible passwords with this alphabet size and up to this password's length)
1.24 x 10 ⁷	Search Space Size (as a power of 10):

Time Required to Exhaustively Search this Password's Space:

3.43 hours	Online Attack Scenario: (Assuming one thousand guesses per second)
0.000124 seconds	Offline Fast Attack Scenario: (Assuming one hundred billion guesses per second)
0.000000124 seconds	Massive Cracking Array Scenario: (Assuming one hundred trillion guesses per second)

(NOTHING you do here ever leaves your browser. What happens here, stays here.)

5 Characters

Cyber

Enter and edit your test passwords in the field above while viewing the analysis below.

Brute Force Search Space Analysis:

26+26 = 52	Search Space Depth (Alphabet):
5 characters	Search Space Length (Characters):
387,659,012	Exact Search Space Size (Count): (count of all possible passwords with this alphabet size and up to this password's length)
3.88 x 10 ⁸	Search Space Size (as a power of 10):

Time Required to Exhaustively Search this Password's Space:

1 444 7376 1	Online Attack Scenario: (Assuming one thousand guesses per second)
I IIIIIXXX CACODOC I	Offline Fast Attack Scenario: (Assuming one hundred billion guesses per second)
0.00000388 seconds	Massive Cracking Array Scenario: (Assuming one hundred trillion guesses per second)

(NOTHING you do here ever leaves your browser. What happens here, stays here.)

3 Lowercase

1 Digit

5 Characters

Cyb3r

Enter and edit your test passwords in the field above while viewing the analysis below.

Brute Force Search Space Analysis:

26+26+10 = 62	Search Space Depth (Alphabet):
5 characters	Search Space Length (Characters):
931,151,402	Exact Search Space Size (Count): (count of all possible passwords with this alphabet size and up to this password's length)
9.31 x 10 ⁸	Search Space Size (as a power of 10):

Time Required to Exhaustively Search this Password's Space:

I SA WEEKS I	Online Attack Scenario: (Assuming one thousand guesses per second)
I CICIIMATE PEROPORE I	Offline Fast Attack Scenario: (Assuming one hundred billion guesses per second)
0.00000931 seconds	Massive Cracking Array Scenario: (Assuming one hundred trillion guesses per second)

(NOTHING you do here ever leaves your browser. What happens here, stays here.)

1 Uppercase

2 Lowercase

1 Symbol

5 Characters

(Yb3r

Enter and edit your test passwords in the field above while viewing the analysis below.

Brute Force Search Space Analysis:

26+26+10+33 = 95	Search Space Depth (Alphabet):
5 characters	Search Space Length (Characters):
7,820,126,495	Exact Search Space Size (Count):
7.82 x 10 ⁹	Search Space Size (as a power of 10):

Time Required to Exhaustively Search this Password's Space:

I J YX MONTHS	Online Attack Scenario: (Assuming one thousand guesses per second)
11 11/8/ 5000006	Offline Fast Attack Scenario: (Assuming one hundred billion guesses per second)
0.0000782 seconds	Massive Cracking Array Scenario: (Assuming one hundred trillion guesses per second)

(NOTHING you do here ever leaves your browser. What happens here, stays here.)

14 Lowercase

4 Digits

5 Symbols

24 Characters

I love cyber stars 2014!

Enter and edit your test passwords in the field above while viewing the analysis below.

Brute Force Search Space Analysis:

Search Space Depth (Alphabet): 26+26+10+33 = 9	5
Search Space Length (Characters): 24 characters	
Exact Search Space Size (Count): (count of all possible passwords with this alphabet size and up to this password's length) 295,095,290 142,625,648,321,021 764,315,625,454,517	,999,
Search Space Size (as a power of 10): 2.95 x 10 ⁴⁷	

Time Required to Exhaustively Search this Password's Space:

Online Attack Scenario: (Assuming one thousand guesses per second)
Offline Fast Attack Scenario: (Assuming one hundred billion guesses per second)
Massive Cracking Array Scenario: (Assuming one hundred trillion guesses per second)

Brute-force

- Ok, sweet. We can take every possible combination, but what are some problems with it?
 - Takes forever
 - Account lockouts does your bank allow you to fail logging in 100 times
 - For most things, it's really not that practical

How are passwords stored?

- Windows and most websites don't actually store your password as a humanly readable word
 - If the system or their database get's pwned, they're in a world of hurt
- Hashes
- Salted Passwords

Password Hash

- A hash is a one-way, non-reversible way to store some sort of data
 - Anyone used MD5, SHA1
- To authenticate a user, the password presented by the user is hashed and compared with the stored hash
 - Can't get the password back from a hash

Hashing

Windows Password Hashes

- Windows stores user passwords in the system's password database (called "SAM") in an encrypted hash
- LM Hash old and really broken
 - Windows XP = Easy!
 - Windows Vista and above turned off by default
- NTLM Hash new and not as broken
 - Used in Windows Vista and above

LM Hash Major Flaws

- Password is restricted to a maximum of fourteen characters
- Password is converted to uppercase
- This password is null-padded to 14 bytes
- The "fixed-length" password is split into two seven-byte halves

NTLM Hash

- NTLM is case sensitive
- Character set is 65,535, and it does not limit stored passwords to two 7-character parts
- Considered a much stronger hashing algorithm
- Same concept in the end, just harder to break

Hashes

- LM
 - 855c3697d9979e78ac404c4ba2c66533
- NTLM
 - \$NT\$7f8fe03093cc84b267b109625f6bbf4b
- Bunch of sample hashes:
 - http://openwall.info/wiki/john/sample-hashes

Getting a Password Hash

- PW Dump
- Cain & Able
- FG Dump
- Get a root shell on the machine remotely, and use some 1337 tools in Kali to extract them

Ok, we have the hashes...

- Now, it's time to break them
- We can start by brute-forcing some

John the Ripper

john --user:<username> <hash file>

NOTE: The user name is case sensitive!

Even Easier

DICTIONARY ATTACK!

Dictionary Attacks

- Attackers are pretty smart
- Once you break a bunch of passwords, why not write them down
- Compile a huge list of passwords that people actually use
- Try each of those hashes to see if they're the right one

RockYou.txt

- In 2009, a major password breach occurred
- 32.6 million stolen passwords of the website's users disclosed
- Attackers have grabbed this, and added to it
- http://cyberstars.ialab.us/Password_Kitteh/

John the Ripper

john --user:<username> --wordlist:<dictionary file> --<hash file>

NOTE: The user name is case sensitive!

Rainbow Tables

- Precomputed table for reversing cryptographic hash functions, usually for cracking password hashes
- Using less computer processing time and more storage than a brute-force attack
- More processing time and less storage than a simple lookup table with one entry per hash

Rainbow Tables

- To store every single 7 character password possible for the given example, it would require a least 417 TB of space - rainbow tables only need around 80 GB of storage space, depending on your generation options
- Middle ground between brute force and dictionary attack
- https://www.freerainbowtables.com

C:\rcracki_mt_0.6.6_win32_mingw>

GPU vs. CPU

- Any gamers in here?
- I bet if you're 1337, you have a nice graphics card
 - You want full FPS, 1080 resolution, etc.
- What a GPU really does is alleviate some of the load of the CPU and handles some computation for the output on the screen

GPU vs. CPU

 CPU has only few cores/ multiple cores with lots of cache memory that can handle few software threads at a time

 GPU has hundreds of cores that can handle thousand of threads simultaneously

GPU vs. CPU

- GPUs are highly specialized in number crunching, something that graphics processing desperately needs
- Multiple GPUs can also be employed to achieve a single goal
- TL;DR; GPUs are really fast, but designed for very specific types of applications

Not all GPUs are created equally...

- Some graphics cards are more capable than others
- Look at how many cores they have
- How much memory
- Before you go buy a password cracking machine, do your due diligence!

Hurdles

- What about non-English passwords?
- Those that use special character sets
 - Wingdings anybody?
- Change frequency
- Locking accounts out

More Iterations

- Running a hash through the hashing algorithms multiple times
- Running a password through SHA256, for instance, and then feeding the hashed output back through the algorithm another 500 times would certainly make wordlist and brute force attacks slower

Salting

- Salting attempts to defeat table lookup attacks by adding several characters to the password before passing it through the hashing algorithm
- Characters don't have to remain secret
- Salting also thwarts cracking techniques that rely on rainbow tables

Salting

Length

Multifactor Authentication

- Something you know
- Something you have
- Something you are

Multifactor Authentication

Google Authenticator

