0x02 Networking

Day 2 – IPs, Subnetting, Important Services

Setup

- Please boot up your Kali VMs
- We will be running some tools to help us view services and network traffic in a bit

Review of Day 1

- OSI Model
- What is an IP address?
- Public vs. Private IP address?
- What is a MAC address?
- What is a packet?

Easy Subnetting

(short and sweet)

Subnetting Basics

- This is a crucial skill to be able to do by hand
- CCNA and other certification exams will require that you know how to do it
- "In the real world, I'm going to use a calculator"
 - Probably, but you really do need to understand how it works and do it in your head

Subnetting Basics

- Having one huge network is not a good idea
 - Segmenting hosts makes networks more manageable
 - Cut down on broadcast traffic
- Take bits from the host portion of an address, and reserve them to define a subnet address instead

IP Address

- 192.168.1.10
 - Remember this is a representation of binary (1, 0)
 - Bit: 1 or a 0
 - Byte: Combination of 8 bits
- Each field or octet is a byte long
 - byte.byte.byte
- So if we can have 8 bits, what is the maximum number we can put into an octet? (11111111)

Creating Subnets

- Determine the number of required network IDs
 - One for each LAN subnet
 - One for each WAN connection
- Determine the number of required host IDs per subnet
 - One for each TCP/IP host
 - One for each router interface
- Based on the above, create:
 - Unique subnet mask for entire network
 - Unique subnet ID for each physical segment
 - Range of host IDs for each subnet

Subnet Masks

- Each machine on a network must know which part of a host address will be the subnet mask
- Subnet mask is 32-bit binary value
- We read them in decimal format
 - 255.255.255.0 rather than 111111111111111111111111100000000

Default Subnet Masks

Class	Format	Default Subnet Mask
А	network.node.node	255.0.0.0
В	network.network.node.node	255.255.0.0
С	network.network.node	255.255.255.0

Classless Inter-Domain Routing (CIDR)

- Also referred to as slash notation
- Simple way to summarize a subnet mask
- Format looks like /<number> where the number represents how many bits are in a subnet mask
- Example: subnet mask of 255.255.255.0
 - In binary, it looks like
 11111111111111111111111100000000
 - Count the 1's and you get 24
 - CIDR notation is /24

CIDR Notation

- /8 through /15 can be used with class A
- /16 through /23 can be used with class A & B
- /24 through /30 work for any class A, B, or C network

Subnetting Made Easy

- Make an excel spreadsheet
 - Know how to write this out by hand too
- If you can draw this table, you will have 0 problems getting your subnetting right

Subnet Chart

- Block size: 2ⁿ
- Usable hosts: block size 2
- CIDR **Start at /24** (255.255.255.0)
 - Smaller block size = higher CIDR
 - Bigger block size = smaller CIDR
- Subnet mask: 256 block size

- Given the subnet 255.255.255.128(/25) and the network 192.168.10.0
- How many subnets?
 - -2(256/128)
- How many hosts per subnet?
 - -126
- Valid subnets?
 - 0 and 128
- Broadcasts?
 - 127 and 255

Subnet	0	128
First Host	1	129
Last Host	126	254
Broadcast	127	255

- Given the Subnet mask of **255.255.255.192** and the network address of **192.168.10.0**
- How many subnets are there?
 - -4 (256/64)

Subnet	0	64	128	192
First Host	1	65	129	193
Last Host	62	126	190	254
Broadcast	63	127	191	255

- Given the network 127.16.0.0/17
- How many subnets?

— 2

Subnet	0.0	128.0
First Host	0.1	128.1
Last Host	127.254	255.254
Broadcast	127.255	255.255

- Given host 192.168.10.10/30
 - What is the block size of the subnet?
 - 4
 - What subnet does the host belong to?
 - 192.168.0.0 to 192.168.0.3
 - 192.168.0.4 to 192.168.0.7
 - 192.168.0.8 to 192.168.0.11
- Fill out the other information about the subnet (usable hosts, subnet mask, broadcast, etc.)

Public vs. Private IP

- What is your home IP address?
 - We've probably all seen 192.168.1.X somewhere
- If we all have the same internal IP address scheme, how can we communicate?
 - There are some ranges of IPs that cannot communicate over the internet, they are reserved for internal use

IP Ranges

- Internal ranges are not routable over the internet
- You need to communicate with other devices that are not on your same network with a public IP address

RFC1918 name	IP address range	number of addresses	largest CIDR block (subnet mask)	host id size	mask bits	classful description[Note 1]
24-bit block	10.0.0.0 - 10.255.255.255	16,777,216	10.0.0.0/8 (255.0.0.0)	24 bits	8 bits	single class A network
20-bit block	172.16.0.0 - 172.31.255.255	1,048,576	172.16.0.0/12 (255.240.0.0)	20 bits	12 bits	16 contiguous class B networks
16-bit block	192.168.0.0 - 192.168.255.255	65,536	192.168.0.0/16 (255.255.0.0)	16 bits	16 bits	256 contiguous class C networks

What is my public IP?

Hang on...

 I'm on the DSU network and my public and private IPs are the same?

DSU is Special

- We have a full class B network at our disposal
 - **-** 138.247.0.1 138.247.255.254
- 65,535 available IP addresses
- Every client device on campus is issued a publicly facing IP address
 - There is still a firewall in front of us all
 - Devices aren't sitting wide open to the world

Network Devices

- Hubs
- Switches
- Bridges
- Routers

Hubs

- Hubs were the main interconnection for older Ethernet networks
- Any incoming signal on any port on a hub is recreated (repeated)
- Everyone can see everyone else's traffic
- All connected devices have to share the total bandwidth
- Replaced by switches

Hub

Switches

- Current most common interconnection for Ethernet networks
- Look like hubs
- Separating every connection, each computer can use the full bandwidth of the switch
- Traffic is segmented so you have a point-topoint connection to the switch

Switches

Bridges

- Used to link Ethernet network media together
- Not very common to see
- Can link Ethernet to fiber, vice versa

Bridges

Routers

- A router connects LANs together using the TCP/IP protocol
- Router must have at least two connections one into a network, and one out to another network
 - Most, especially in enterprise environments have many more

What is this?

What is DHCP?

- Dynamic Host Configuration Protocol
- When you connect to Wifi you "just get an IP"
- DHCP assigns any host that connects an IP address
 - We don't have to take the time to assign these manually
 - We don't have to worry about 2 hosts using the same IP
- Configuring DHCP you can set a pool
 - Range(s) of IP's that are allowed to be automatically assigned

Activity: Release & Renew

- Release and renew your DHCP assigned IP address
 - You may get the same address back
 - O Why?
 - O What does release actually do?
- Windows: ipconfig /release && ipconfig /renew
- Linux: dhclient -r eth0; dhclient eth0
- Wireshark: udp.port == 68

DHCP Lease

- How long you can keep an IP for
 - Admins can set this

What is DNS?

- Domain Name System
 - The internet's address book
 - Map's domain names to IP addresses
 - i.e. google-public-dns-a.google.com \rightarrow 8.8.8.8

Types of DNS Records

- MX Record
 - Mail exchange record that points to a domains mail servers
- CNAME Record
 - Canonical record link to aliases (e.g. <u>www.google.com</u> → google.com
- A Record
 - \circ Address links to the ip address (e.g. <u>www.google.com</u> \rightarrow 172.194.64.147
- NS Record
 - Nameserver Shows the nameserver(s) for the given domain

Activity: nslookup

- Use nslookup to find the following records from www.dsu.edu
 - A
 - o CNAME
 - \circ MX
 - o NS

DNS Zone

- Pretty much like a folder for DNS entries
- Way to organize records by domain name

DNS AXFR

- DNS servers need to stay in sync
 - What if I light up a new web server, I want everyone else to know about it
- Authorized servers should be able to perform a "zone transfer" on each other to learn about new changes
 - Also called AXFR
- You effectively retrieve all of the zones another server knows about

Performing Zone Transfer

- In Kali, you can use a tool called dnsenum
- Perform a transfer on zonetransfer.me
 - Server someone stood up for testing
- Can we find it in Wireshark?