GenCyber Networking

ARP Poisoning

Refresher on ARP

- We are talking layer 2 of the OSI (data link)
- Most switches operate at layer 2, and perform as much networking as possible on layer 2
 - It's quicker to do it this way rather than sending it via layer 3 (IP address) to a router, etc.
- The MAC address is how machines on a subnet communicate
 - When you ping an IP, if it is on the same subnet as your machine, the IP address gets translated back into a MAC address

Refresher on ARP

- IP to MAC translations are stored in the MAC table of your system
- Switches also keep track of what IP/MAC addresses are on which physical ports connected to the switch:

Address Learning

- MAC forward/filter table is empty on boot
- When device transmits and interface receives a frame, switch puts frames source address in MAC table
- Floods the network with the frame except on source port
- If device answers, switch will place that MAC in the database as well (point-to-point)

Layer 2 Frames

Empty MAC Table

How Switches Learn Hosts' Locations

MAC Forward/Filter Table

E0/0: 0000.8c01.000A step 2 E0/1: 0000.8c01.000B step 4

E0/2: E0/3:

Forward/Filter Decisions

- When a frame arrives at a switch interface, destination address is compared to database
 - If found, frame is forwarded only to the destination (frame filtering)
 - If not found, frame is flooded on all interfaces except the source interface
- Broadcast on LAN will flood the frame out all active ports except the source

Forward/Filter Example (A > D)

Switch# show mac address-table

VLAN	Mac Address	Ports
1	0005.dccb.d74b	Fa0/4
1	000a.f467.9e80	Fa0/5
1	000a.f467.9e8b	Fa0/6

Forward/Filter Example (A > D)

Switch# show mac address-table

Switch View

BH_SecCam#sh mac address-table

Mac Address Table

Vlan	Mac Address	Туре	Ports			
36	0040.8cb1.d9fd	DYNAMIC	Gi0/1			
36	0040.8cb1.d9fe	DYNAMIC	Gi0/1			
36	0040.8cd9.e729	DYNAMIC	Gi0/1			
36	0040.8cda.4e87	DYNAMIC	Gi0/1			
36	0040.8cda.4e8a	DYNAMIC	Gi0/1			
1	588d.090d.d630	DYNAMIC	Gi0/1			
1	8875.563c.5840	DYNAMIC	Gi0/1			
3	588d.090d.d630	DYNAMIC	Gi0/1			
4	588d.090d.d630	DYNAMIC	Gi0/1			
BH_SecCam#sh arp						
Protocol	Address	Age (min)	Hardware Addr	Туре	Interface	
Internet	138.247.36.1	0	8875.563c.5840	ARPA	Vlan36	
Internet	138.247.38.233	_	64ae.0c61.ebc1	ARPA	Vlan36	

ARP Poisoning

- Also referred to as ARP Spoofing
- Attacker sends fake ARP messages out on network to single host or group of devices
 - Poisoned hosts then link the MAC address with the IP of a legitimate computer/server on the network
- The attacker can then intercept, modify, or redirect network traffic as they please
 - Stolen credentials, redirected to malware, etc.

Man-in-the-Middle (MITM) Attack

Simple ARP Request/Response

Reverse ARP Request (RARP)

Reverse ARP Reply (RARP)

Same concept as a ARP Request/Response only backwards.

Can't I just sniff traffic anyways?

- If I'm plugged into a switch, can I see everybody's traffic?
 - No
- What if I put my adapter into promiscuous mode with Wireshark?
 - Still no
- Remember: switches breakup collision domains this means that you see your traffic and your traffic only by default
 - Hubs do allow for all traffic to be seen by everyone
 - On a switch, you will need to troll people into connecting to you, then you can pass their traffic on as if all were normal

Activity: Record ARP Table

- Since we are going to perform an ARP Poisoning attack, take a minute to record what your ARP table looks like on your host machine
- If the attacks are successful, it will be good to have a baseline to look at and see how the networking changes

ARP Tables

```
_ _
                                  Command Prompt
C:4.
C:\Users\mjham>arp -a
Interface: 192.168.225.173 --- 0x3
  Internet Address
                        Physical Address
                                               Type
dynamic
  192.168.225.2
                        00-50-56-e7-fc-d6
  192.168.225.255
                        ff-ff-ff-ff-ff
                                               static
                        01-00-5e-00-00-16
  224.0.0.22
                                               static
  224.0.0.252
                        01-00-5e-00-00-fc
                                               static
  255.255.255.255
                        ff-ff-ff-ff-ff-ff
                                               static
C:\Users\m.jham>
```

```
    mjham - bash - 80×24

                                    bash
Last login: Sat Jun 20 23:18:10 on ttys000
MJHDSU13:~ mjham$ arp -a
? (138.247.96.1) at 88:75:56:3c:58:40 on en0 ifscope [ethernet]
? (138.247.96.11) at 24:a2:e1:61:b9:da on en0 ifscope [ethernet]
? (138.247.96.20) at 9c:f3:87:7e:4a:e5 on en0 ifscope [ethernet]
? (138.247.96.39) at e4:25:e7:60:d8:a3 on en0 ifscope [ethernet]
? (138.247.96.43) at 9c:f3:87:4e:b5:63 on en0 ifscope [ethernet]
? (138.247.96.48) at 74:81:14:6d:70:b0 on en0 ifscope [ethernet]
? (138.247.96.55) at a4:5e:60:d3:8e:6b on en0 ifscope permanent [ethernet]
? (138.247.96.66) at 6c:94:f8:c0:6f:b9 on en0 ifscope [ethernet]
? (138.247.96.89) at 6c:70:9f:16:57:de on en0 ifscope [ethernet]
? (138.247.96.90) at 6c:94:f8:be:7:fd on en0 ifscope [ethernet]
? (138.247.96.188) at 6c:94:f8:b7:fa:ed on en0 ifscope [ethernet]
? (138.247.96.193) at 6c:94:f8:ba:e5:72 on en0 ifscope [ethernet]
? (138.247.96.198) at 6c:94:f8:b8:5f:6 on en0 ifscope [ethernet]
? (138.247.96.199) at 6c:94:f8:c0:87:c7 on en0 ifscope [ethernet]
? (138.247.96.200) at 6c:94:f8:ba:e6:bc on en0 ifscope [ethernet]
? (138.247.111.255) at ff:ff:ff:ff:ff:ff on en0 ifscope [ethernet]
? (172.16.52.255) at ff:ff:ff:ff:ff:ff on vmnet1 ifscope [ethernet]
? (192.168.225.173) at 0:c:29:c3:b4:ad on vmnet8 ifscope [ethernet]
? (192.168.225.255) at ff:ff:ff:ff:ff on vmnet8 ifscope [ethernet]
MJHDSU13:∼ mjham$
```

Attackers Know ARP is Gullible

- ARP has no method of authentication
- ARP replies are assumed to be trusted
- Legitimate ARP traffic happens at certain intervals, but there is no time limit/ triggers on replies

Team Up!

 Form groups, you will need one attacker and one or two victims (nothing bad will actually happen to your machines)

Write this Down

- On the victim machine, view your ARP table, and record the MAC address of the telnet server
 - arp –a
- What is the victim's Windows 8 IP address?
 - ipconfig
- What is the attacker's Kali MAC address?
- What is the attacker's Kali IP address?
 - ifconfig

Command

- Start Wireshark on the attacker machine
- Have the client try to ftp to the server
 - ftp X.X.X.X
 - Enter in a fake username/password (not your real one)
- ettercap -T -M arp:remote /<gateway>/ /<host or range>/
- View the ARP table on the victim to make sure the MAC has changed
- Have the victim machine FTP to the server again
- Stop the Wireshark capture on the attack machine

You're not so sneaky...

- Take a look at what your ARP poisoning attack looks like in Wireshark
- This would be very obvious to a system administrator (yes we look for this type of stuff on campus)
- Real world, there are ways to be more stealthy, but I'm going to leave that up to you to figure out
 - Diving into this stuff is really fun, you'll learn a lot and have better understanding of the attack

Examples In the Wild

- Denial of Service
- MAC Flooding
- Man-in-the-Middle
 - Capture authentication credentials
 - Spoof services SMB, SMTP

ARP Spoofing Defense

- Small networks: static IP and ARP table
- Large networks: switch port security
 - Allows only one MAC per switch port
- Everything else: ARP monitoring tools
 - IDS/IPS
 - ARPwatch